特高連系風力発電所監視システムの開発

渡 部 拓 郎* 直 井 光 一** 前 澤 敏 昭** 宮 坂 登志道**

Development of a SCADA System for Wind Farms

by Takuro WATANABE, Koichi NAOI, Toshiaki MAEZAWA, & Toshimichi MIYASAKA

A SCADA (Supervisory Control And Data Acquisition) system has been developed for totalized monitoring and controlling of wind farms, thus enabling integrated management of both wind turbine and power generator systems. The following discusses the basic geometry, specifications and features of this cost-saving SCADA system.

Keywords: Wind turbine generator, Wind farm, SCADA system, Web server, Database

1. はじめに

風車本体及び受変電設備を含めた大規模風力発電所 (ウィンドファーム)向け監視システムを新たに開発し たので、その概要について紹介する。

2. 従来のシステムの問題点と開発の経緯

ウィンドファームは数台から数十台の風車と、それら を電力会社の特別高圧系統に連系するまでの電気設備を 備えた大規模風力発電所である。従来のウィンドファー ムの遠隔監視システムでは、風力発電機メーカが供給す る風車専用監視装置と、電気設備を監視するための一般 的な監視装置の二つの監視装置を併設していたが、次の ような問題を抱えていた。

- (1) 高コストであると共にスペースファクタが悪い。
- (2) それぞれの監視画面,及び帳票類が別個のため運転管理上利便性が悪い。
- (3) 海外製の風車を採用する場合, 風車専用監視装置の文字が英語のため利用しにくい。
- 一方,当社は2003年にドイツの風車メーカであるフライデラーウィンドエナジー社(現在はファーランダーウィ
 - * 風水力機械カンパニー エネルギー事業統括部 風力発電事業室 電気設計グループ
 - ** 同 同
 - ** ITエンジニアリング(株)
 - ** (株) 荏原電産

ンドパワー社)との合弁会社である荏原フライデラー・ウィンドパワー(株) (EPW社) を設立したが、それを機に、同社製風車を対象として、前記問題を解決する特高連系風力発電所監視システムの開発に着手した。

3. システムの特長

本システムの特長を以下に示す。

- (1) 風車設備と電気設備を統合した監視システム
- 一つの監視端末で風車設備,電気設備を含めた監視操 作が可能である。
- (2) 一つの監視端末で複数のウィンドファームの遠隔 監視操作が可能

複数のウィンドファームを遠隔監視する監視センター においても、遠隔監視端末は1台でよい。

(3) 遠隔監視端末を複数設置可能

複数箇所の監視操作場所から同一のウィンドファーム に対し監視操作が可能である。

(4) 当社カスタマサポートシステム (CSシステム) との接続による風車遠隔メンテナンスサポート

当社カスタマサポートシステム(詳細は後述)を接続することにより、風車の24時間の遠隔サポートを可能とし、風車稼働率の向上を図っている。

(5) 風車設備を含めすべて日本語対応

従来英語が多かった風車関連の表示、印字をすべて日本語化している。

同

4. システム概要

4-1 システム構成

本監視システムの全体構成を図1に示す。

4-2 遠隔監視システム

現地とユーザ遠隔監視所間をISDN回線ダイヤルアップ回線にてPoint to Point接続し、現地のWEBサーバ機(名称:WEBサーバ)との通信を行い、クライアントソフト(本システム専用画面ソフト)を使って設備の遠隔監視・操作を行うシステムである。

ユーザが利用するのは基本的には本システムである。

4-3 カスタマサポートシステム (CSシステム)

本システムは当社製品とメンテナンス部門をオンラインネットワークで接続し、ユーザにおける運転管理、異常時の対応を遠隔でサポートするための当社標準のWEB型の監視・操作システムである。このシステムは、現地に設置するローカルサーバ(名称:OMサーバ)と当社のデータセンターに設置されたデータサーバ間でISDN回線を使った通信を行い、データサーバにデータを蓄積

した後、イントラネットないしインターネット接続された遠隔 Web 監視端末 (一般の PC) からの要求に応じ WEB 上でデータを配信する仕組みとなっている。

遠隔Web監視端末は通常風車専門技術員が常駐するメンテナンスサービス部門,ないし技術部門に設置される。

5. 主要機器の説明

遠隔監視システムの主要機器について以下に説明する。

5-1 OMサーバ

OMサーバは各設備の運転データを収集・保存するサーバであり、遠隔監視システム及びCSシステム共通のメインサーバとなっている。

OMサーバの機能概要を表1に示す。

5-2 WEBサーバ

OMサーバのDB内に保存されるデータを現場監視端末及び遠隔監視システムの監視端末へ配信するサーバである。各監視端末に搭載するクライアントソフト(専用画面ソフト)は、起動時にWEBサーバと通信を行い必要なデータを取得する。WEBサーバにはクライアント

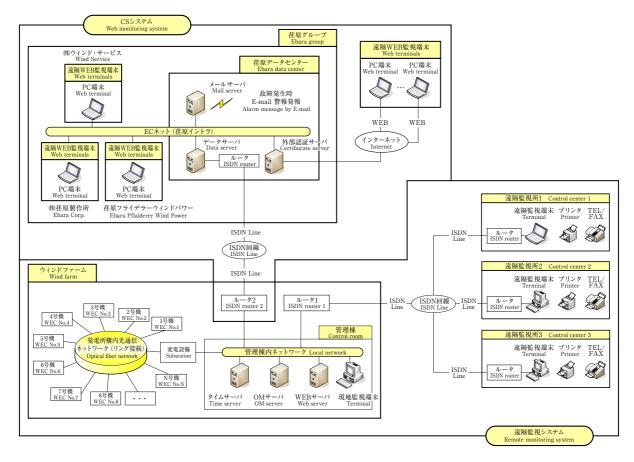


図1 風力発電所監視システム全体構成図 Fig. 1 Block diagram of SCADA system for wind farms

表1 OMサーバ機能概要 **Table 1** Specifications of OM server

	I	
項目	説明	
ITEM	Description	
対象機器	EPW1570機	
target	EPW1570	
対象設備規模	最大30設備	
No. of turbines	30 turbines	
データ収集	5秒周期	
Data sampling cycle	5 sec	
データ保存周期	1分周期	
Data recording cycle	1 min	
データ保存期間	1年間	
Data recording span	1 year	
帳票保存期間	日報	366 日間
Report recording span	Daily report	366 days
	月報	3年間
	Monthly report	3 years
	年報	6年間
	Annual report	6 years
履歴保存点数	運転履歴	-
Digital data recording	Operation data	10000件
	状態履歴	
	Conditional data	10000件
	故障履歴	
	Trouble data	10000件
	操作履歴	
	Remote controling data	10000件
入出力点数(最大/設備)	計測值	
No. of I/Os /turbine	Analog inputs	450点
1.0.011/00/turbine	精算值	
	(情弁他) Counter signal inputs	200点
	接点	
	接思 Digital inputs	800点
	パラメータ設定	
	ハフメータ設定 Analog outputs	500点
	操作 Digital outputs	200点
	Digital outputs	

ソフトのバージョンチェック機能があり、監視端末上のクライアントソフトがWEBサーバのバージョンより古ければ、ソフトを自動的に更新する機能をもち、これにより、各監視端末上のクライアントソフトを常に最新の状態に保つことができる。また、遠隔監視端末に配信するデータは収集データだけとし、固定の画面データ等は含まないことにより応答性を確保している。

5-3 現地監視端末,及び遠隔監視端末

これらはいずれも前述のWEBサーバのクライアントという位置付けであり、ユーザはこれらの端末上で風車設備及び電気設備を含めたウィンドファーム全体の監視操作を行うことが可能である。

これらの端末上で使用するクライアントソフトは、ウィンドファーム監視向けに新たに開発した監視画面用ソフトであり、市販されている汎用PC上で使用することが可能である。

現地監視端末と遠隔監視端末の違いの一つは、前者は

WEBサーバと直接LAN接続され、後者はWEBサーバとISDN回線で接続されるという点である。もう一つの違いは、遠隔監視端末は前記クライアントソフトの設定ファイルとして複数のウィンドファームの設定ファイルを登録することにより、特長の(2)に記載した一つの遠隔監視端末で複数のウィンドファームの監視操作を可能としている点にある。

一方,これらの端末は複数設置することが可能であり,特長(3)に記載した複数箇所での監視操作を実現している。

5-4 タイムサーバ

システム時刻はタイムサーバによってすべて統一され、計測データや履歴データを正確に記録することが可能である。なお、管理棟内にはFMアンテナを設置し、FM放送の時報に合わせてタイムサーバの内部時計を補正することで標準時刻と同期をとっている。

6. 専用画面ソフトの機能について

本システムでは通常の監視・操作機能に加え、風車特

表2 専用画面ソフト機能一覧

Table 2 Basic specifications of exclusive application software

項目	説明	
Item	Description	
動作環境	OS: Windows*1 2000以上を搭載した汎用PC	
Hardware	OS: general-purpose computer with	
requirements	Windows*1 2000 and above	
その他必要なソフトウェア	Microsoft Office*1 2003以上,IE6.0*1,	
Software requirements	.NET Framework 1.1 *2, Flash Player *2	
仕様言語	日本語 (一部信号名称に英語有り)	
Language	Japanese	
画面更新	5秒毎に自動データ更新	
Data refresh time	5 sec, automatically	
監視機能	現在値一覧	
Monitoring	Present I/O data list	
	系統図	
	System graphic display	
	トレンドグラフ	
	Trend graph	
	発生中故障一覧	
	Present alarm display	
記録機能	日報, 月報, 年報作成	
Recording	Daily/monthly/annual reports	
	故障,状態,運転,操作履歷	
	Trouble/status/operation/control logs	
	パワーカーブ,風配図のグラフ作成	
	Power curve/Wind rose	
	故障時間集計, 故障回数集計	
	Alarm report/alarm count reports	
	故障解析用データ	
	Analysis support data	
操作機能	操作	
Control	Remote control & operation	
	風車の運転パラメータ設定	
	Operating parameter changes	

表3 遠隔操作画面 Table 3 Remote controlling function

設備 Facility	操作内容 Control items
変電設備 Substation	開閉器入切,エラーリセット Breaker ON/OFF, Error reset
風車 Wind turbine	起動,停止,エラーリセット Start, Stop, Error reset
	出力制限(0~100%) Output power control from 0 to 100%
	ブレードピッチ角制限(0~100%) Blade angle control from 0 to 100%
	手動操作モードへの切替 Maintenance switch ON/OFF
	ピッチ角度調整 Blade angle control
	ヨーイング(ナセル回転) Yawing left/right
	自動エラーリセット設定 Automatic error reset level change

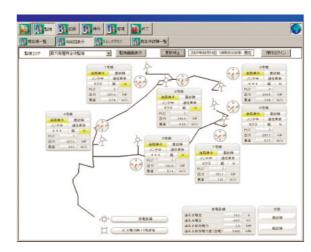


図2 発電所全体監視画面 Fig. 2 Main display

有の管理機能及び異常時の支援機能等の各種ソフトウエアを組み込んでおり、その一覧を表2、表3に示す。その内のいくつかの機能について以下に紹介する。

なお、各種収集データ、保存データを含めほとんどの データはCSV形式で外部保存が可能である。

6-1 故障時間集計,故障回数集計

故障停止時間集計は、風車の故障が発生してから運転を再開するまでの時間を自動集計表示する機能である。故障回数集計は、任意の期間内に発生した故障の回数を項目別に自動集計表示する機能である。これらの機能はいずれもメンテナンス支援のほか、稼働率保証計算などに利用可能である。

6-2 故障解析用データ

故障解析用データとは、故障が発生した時刻の前10秒、後10秒の計20秒間の運転データ(接点データ最大500点、計測データ最大100点)を1秒周期で自動収集する機能である。故障発生時に関連する項目の時系列データを分析することにより故障解析に役立てることが可能である。

6-3 パラメータ設定

風車の各種の運転制御パラメータを現地,遠隔監視端 末から変更することが可能である。

6-4 セクターマネージメント機能

セクターマネージメントとは、ウィンドファームにおいて、各風車間の位置(配置)が関係して生じる風の乱れにより風車の機械的寿命が低下するのを防ぐため、風向と風速を条件に風車の運転・停止を管理する機能であり、本システムに組み込んでいる。

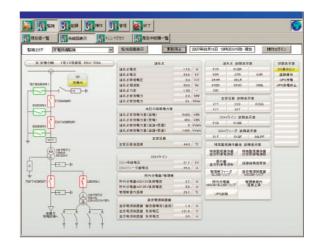


図3 変電設備監視画面 Fig. 3 Graphic display of substation

図4 風車個別監視画面 Fig. 4 Graphic display of wind turbine


7. 監視画面例

監視画面例を図2~4に示す。

8. おわりに

今回開発した監視システムが今後のウィンドファーム における管理運用の一助となれば幸いである。 なお、本システムはEPW社の風車を対象としているが、通信プロトコルを変更することにより他社の風車への対応も可能である。

- *1 Windows, NET FRAMEWORK 1.1, Microsoft Office, IE6.0 は Microsoft Corporation の登録商標である。
- *2 Flash PlayerはAdobe System Incorporatedの登録商標である。

